
ovirt-img
Flying with NBD

Albert Esteve
Senior Software Engineer
aesteve@redhat.com

RHV Demo Aug 2022Nir Soffer
Principal Software Engineer
nsoffer@redhat.com

Agenda

■ Transferring images is hard
■ The ovirt-img tool
■ Live demo
■ Future work

The "secret" plan

Transferring images is hard

Detecting image format

■ ISO images needs special handling
■ QCOW2 images needs special handling

○ More on this later

Getting image virtual size

■ For QCOW2 we cannot use the file size
■ We need to set the provisioned size to the virtual size

Determining disk initial size

■ When upload QCOW2 sparse disk to block storage we must allocate enough
space or the upload will fail when the disk becomes full

■ We cannot use the file size since the source may be compressed

Determine disk format and allocation

■ Do you want incremental backup?
○ Works only with QCOW2 disks

■ Do you want best possible performance?
○ Use RAW preallocated

■ How to convert RAW image to QCOW2 disk (or the other way around)?

Does storage domain support this?

■ Can we upload RAW sparse image to this storage domain?
○ RAW sparse is not allowed on block based domain
○ QCOW2 preallocated requires backup="incremental"

How to transfer the data?

■ Uploading or downloading data using HTTP is not trivial
○ Specially if you want to do this efficiently

How to transfer images faster?

■ How to use multiple HTTP connections?
■ How avoid transferring unallocated areas (read as zeros)?

How to optimize?

■ If you run on an oVirt host in the same data center, you can upload faster and
with minimal bandwidth using unix socket

Use transfer_url or proxy_url?

■ transfer_url is the host URL
○ Much faster to upload directly to host

■ proxy_url is engine URL
○ Much slower to upload via engine proxy, but if the host is not accessible this is the only way

Handling errors

■ On upload: cancel transfer on failures
■ On download: finalize the transfer on failures

We have engine SDK examples right?

We have upload_disk.py, download_disk.py, but:
■ On RHVH/oVirt node: Not installed
■ On RHEL/CentOS: Installed in /usr/share/doc/something (not in

the PATH)
■ They don't have good defaults, easy to shoot yourself in the foot
■ Not supported - just an example code

The ovirt-img tool

based on https://xkcd.com/353/

https://xkcd.com/353/

NBD-based pipeline

qemu-nbd NBD ovirt-img imageio
server qemu-nbdHTTP NBD

image disk

Always installed

■ Part of ovirt-imageio-client package
○ Depends on python3-ovirt-engine-sdk4 package

■ Can be installed via pip
■ Will also be available via a container

Easy to use

Only requires server-side settings

$ ovirt-img download-disk \

 --engine-url https://engine.com \

 --username admin@internal \

 --cafile /path/to/cert.pem \

 {disk-id} download.qcow2

password:

[100%] 6.00 GiB, 16.85 s, 364.64 MiB/s | download completed

Use configuration file

Add configuration for your setup (you can have many):

$ cat ~/.config/ovirt-img.conf

[engine1]

engine_url = https://engine.com

username = admin@internal

password = password

cafile = /path/to/cert.pem

Use configuration file

Specify the section name:

$ ovirt-img download-disk --config engine1 {disk-id} image.qcow2

[100%] 6.00 GiB, 16.85 s, 364.64 MiB/s | download completed

It just works

ovirt-img does the right thing for the image and storage domain:

$ ovirt-img upload-disk -c engine --storage-domain iscsi-01 image.compressed.qcow2

[100%] 6.00 GiB, 25.39 s, 241.97 MiB/s | upload completed

$ ovirt-img upload-disk -c engine --storage-domain nfs-01 image.raw

[100%] 6.00 GiB, 34.19 s, 179.72 MiB/s | upload completed

$ ovirt-img upload-disk -c engine --storage-domain fc-01 image.iso

[100%] 6.00 GiB, 30.24 s, 201.32 MiB/s | upload completed

Under the hood

■ Inspects the image format and virtual size

■ Measures the required size for the image

○ Supports compressed QCOW2 image

■ Enables incremental backup by default

■ Converts image format on the fly to QCOW2

■ Detects ISO images and upload them as RAW preallocated

■ Handles errors correctly

■ Uploads efficiently (more on this later)

Efficient data transfer

■ Detects and skips zero extents
■ Using multiple HTTP connections
■ Sparsify images (convert data with zeros to holes)
■ Use unix socket when running on oVirt host

$./ovirt-img upload-disk -c engine -s fc-01 fedora-35-8t.qcow2

[100%] 8.00 TiB, 95.97 s, 85.36 GiB/s | upload completed

$./ovirt-img download-disk -c engine d9c37bc3d155 fedora-35-8t.qcow2

[100%] 8.00 TiB, 67.01 s, 122.25 GiB/s | download completed

Is flexible

Options to tweak the command behaviour for various use cases

Upload

--preallocated Create preallocated disk instead of sparse

--format raw Create disk in RAW format

--disk-id Set the UUID for the new disk

--name Set the alias for the new disk

Download

--format Specify the format of the downloaded image

Live demo

Future work

■ ovirt-img container
■ More commands:

○ download snapshot
○ upload snapshot
○ backup disk
○ mirror disk (using incremental backup for warm import)

■ Upload any image format supported by qemu-nbd
■ Improve error handling
■ Add system tests for actual commands

More info

■ Project: https://github.com/oVirt/ovirt-imageio
■ Open issues: ovirt-img open issues

https://github.com/oVirt/ovirt-imageio
https://github.com/oVirt/ovirt-imageio/issues?q=is%3Aissue+is%3Aopen+label%3Aovirt-img

Questions?

