ovirt-im

Flying with NBD

Albert Esteve Nir Soffer \ RHV Demo Aug 2022
Senior Software Engineer Principal Software Engineer \

aesteve@redhat.com nsoffer@redhat.com

Agenda

Transferring images is hard
The ovirt-img tool

Live demo

Future work

The "secret" plan

N4

7

MIGRATION TOOLKIT®

Transferring images is hard

Detecting image format

m |SO images needs special handling
m QCOW2 images needs special handling

o More on this later

Getting image virtual size

m For QCOW2 we cannot use the file size
m \We need to set the provisioned size to the virtual size

Determining disk initial size

m When upload QCOW?2 sparse disk to block storage we must allocate enough
space or the upload will fail when the disk becomes full
m We cannot use the file size since the source may be compressed

Determine disk format and allocation

m Do you want incremental backup?
o Works only with QCOW?2 disks

m Do you want best possible performance?
o Use RAW preallocated

m How to convert RAW image to QCOW?2 disk (or the other way around)?

Does storage domain support this?

m Can we upload RAW sparse image to this storage domain?

o RAW sparse is not allowed on block based domain
o QCOW?2 preallocated requires backup="incremental"

How to transfer the data?

m Uploading or downloading data using HTTP is not trivial
o Specially if you want to do this efficiently

How to transfer images faster?

m How to use multiple HTTP connections?
m How avoid transferring unallocated areas (read as zeros)?

How to optimize?

m If you run on an oVirt host in the same data center, you can upload faster and
with minimal bandwidth using unix socket

Use transfer_url or proxy_url?

m transfer_url is the host URL
o Much faster to upload directly to host

m proxy urlis engine URL
o Much slower to upload via engine proxy, but if the host is not accessible this is the only way

Handling errors

m On upload: cancel transfer on failures
m On download: finalize the transfer on failures

We have engine SDK examples right?

We have upload_disk.py, download_disk.py, but:
m On RHVH/oVirt node: Not installed
m On RHEL/CentOS: Installed in /usr/share/doc/something (not in
the PATH)
They don't have good defaults, easy to shoot yourself in the foot
Not supported - just an example code

The ovirt-img tool

\.\\:5\ \\\\%
7/ VA

. Ay
7 4

Z \)
VY27 \\
% \w\\xt

2 .\.\\Q\\\.\\\\\.\\
/ r/

%Y Wil v

/

/.

Ny

YOURE FLYING
HOW?

) Yo I

\\ WIS O

/14 28 lens S Y/
7, £ LY ;

oy \ g

/
/
S

N Wi,

based on https://xkcd.com/353/

https://xkcd.com/353/

NBD-based pipeline

[qemu-nbd ovirt-img irgearg\;/ziro qemu-nbd}
1

Always installed

m Part of ovirt-imageio-client package
o Depends on python3-ovirt-engine-sdk4 package
m Can be installed via pip

m Will also be available via a container

Easy to use

Only requires server-side settings

S ovirt-img download-disk \
--engine-url https://engine.com \
--username admin@internal \
--cafile /path/to/cert.pem \
{disk-id} download.qcow2
password:
[1006%] 6.00 GiB, 16.85 s, 364.64 MiB/s | download completed

Use configuration file

Add configuration for your setup (you can have many):

$ cat ~/.config/ovirt-img.conf
[enginel]
engine_url = https://engine.com

admin@internal

username

password password

cafile = /path/to/cert.pem

Use configuration file

Specify the section name:

$ ovirt-img download-disk --config enginel {disk-id} image.qcow2
[1006%] 6.00 GiB, 16.85 s, 364.64 MiB/s | download completed

It just works

ovirt-img does the right thing for the image and storage domain:

S ovirt-img upload-disk -c engine --storage-domain iscsi-01 image.compressed.qcow2
[100%] 6.00 GiB, 25.39 s, 241.97 MiB/s | upload completed

S ovirt-img upload-disk -c engine --storage-domain nfs-81 image.raw
[100%] 6.00 GiB, 34.19 s, 179.72 MiB/s | upload completed

S ovirt-img upload-disk -c engine --storage-domain fc-81 image.iso
[100%] 6.00 GiB, 30.24 s, 201.32 MiB/s | upload completed

Under the hood

Inspects the image format and virtual size
Measures the required size for the image
o Supports compressed QCOW2 image
Enables incremental backup by default
Converts image format on the fly to QCOW?2
Detects ISO images and upload them as RAW preallocated
Handles errors correctly

Uploads efficiently (more on this later)

Efficient data transfer

Detects and skips zero extents

Using multiple HTTP connections

Sparsify images (convert data with zeros to holes)
Use unix socket when running on oVirt host

S ./ovirt-img upload-disk -c engine -s fc-01 fedora-35-8t.qcow2
[1006%] 8.00 TiB, 95.97 s, 85.36 GiB/s | upload completed

S ./ovirt-img download-disk -c engine d9c37bc3d155 fedora-35-8t.qcow2
[1006%] 8.00 TiB, 67.01 s, 122.25 GiB/s | download completed

Is flexible

Options to tweak the command behaviour for various use cases

Upload

--preallocated Create preallocated disk instead of sparse
--format raw Create disk in RAW format

--disk-id Set the UUID for the new disk

--name Set the alias for the new disk

Download

--format Specify the format of the downloaded image

Future work

ovirt-img container
More commands:
o download snapshot
o upload snapshot
o backup disk
o mirror disk (using incremental backup for warm import)
Upload any image format supported by gemu-nbd
Improve error handling
Add system tests for actual commands

More info

m Project: https://qithub.com/oVirt/ovirt-imageio
m Open issues: ovirt-img open issues

https://github.com/oVirt/ovirt-imageio
https://github.com/oVirt/ovirt-imageio/issues?q=is%3Aissue+is%3Aopen+label%3Aovirt-img

Questions?

