
Hosted Engine deep dive
Everything you always wanted to know
about oVirt Hosted Engine*
(*but were afraid to ask)

Simone Tiraboschi, Principal Software Engineer

January 2019

2

AGENDA
● Brief getting started

○ Packages
○ Services

● Hosted engine deployment:
○ Vintage flow
○ New node 0 flow
○ Cleanup
○ UI - cockpit

● HE Maintenance types: local/global
● Technical details and internals
● Logs and troubleshooting:

○ Backup and restore
○ Major issues

● Q&A ???

Getting started

3

● Hosted engine is the simplest way to ensure HA capabilities for oVirt engine/RHV
manager

● The engine is installed on a VM (it saves hosts for virt purposes)
● The engine VM runs on hosts managed by the engine
● HE involved hosts can also run regular VMs
● Dedicated services on HE hosts will take care to keep the engine up

Related packages

● ovirt-engine-appliance/rhvm-appliance: it provides an up to date appliance with engine rpms
● ovirt-hosted-engine-setup: provides the setup and CLI utility
● ovirt-hosted-engine-ha: provides ha services:

○ ovirt-ha-agent:
■ Monitors local host state, engine VM status
■ Takes action if needed to ensure high availability

○ ovirt-ha-broker:
■ Liason between ovirt-ha-agent and:

● Shared storage (metadata)
● Local host status (monitoring)

■ Serializes requests
■ Separate, testable entity distinct from ovirt-ha-agent

ovirt-ha-broker

● Used by ovirt-ha-agent to read to/write from storage
● Has a set of monitors for host status:

○ Ping (gateway)
○ CPU load
○ Memory use
○ Management network bridge status
○ Engine VM status (at virt level)
○ Engine status (via http request to an health page)

● Listening socket:
/var/run/ovirt-hosted-engine-ha/broker.socket

ovirt-ha-agent

● Ensures ovirt-engine VM high availability
● Uses configuration file written by setup (/etc/ovirt-hosted-engine/hosted-engine.conf):

○ Host id, storage config, gateway address to monitor, …
● If Engine VM is not running, it's started
● If Engine is non-responsive, VM is restarted
● VM status read from vdsm getVmStats verb
● Engine status via engine liveness page:

http://<engine-fqdn>/OvirtEngineWeb/HealthStatus

ovirt-ha-agent - host score

● Single number (scalar) representing a host's suitability for running the engine VM
● Range is 0 (unsuitable) to 3400 (all is well)
● May change
● Calculated based on host status: each monitor (ping, cpu load,

gateway status, ...) has a weight and contributes to the score
● If VM is starting, starts on host with highest score If startup fails, host score is temporarily reduced,

allows other hosts to try starting the VM
● If VM is running, and a different host has much higher score, VM is migrated to the better host
● Current migration/restart threshold is 800 points E.g. gateway failure will trigger migration, cpu load

won't...

ovirt-ha-agent - host score penalties

https://github.com/oVirt/ovirt-hosted-engine-ha/blob/master/ovirt_hosted_engine_ha/agent/agent.conf

[score]

NOTE: These values must be the same for all hosts in the HA cluster!

base-score=3400

gateway-score-penalty=1600

not-uptodate-config-penalty=1000

mgmt-bridge-score-penalty=600

free-memory-score-penalty=400

cpu-load-score-penalty=1000

engine-retry-score-penalty=50

cpu-load-penalty-min=0.4

cpu-load-penalty-max=0.9

https://github.com/oVirt/ovirt-hosted-engine-ha/blob/master/ovirt_hosted_engine_ha/agent/agent.conf

ovirt-ha-agent - host score penalties

https://github.com/oVirt/ovirt-hosted-engine-ha/blob/master/ovirt_hosted_engine_ha/agent/states.py

Penalties are proportionally applied:

 # Penalty is normalized to [0, max penalty] and is linear based on

 # (magnitude of value within penalty range) / (size of range)

 penalty = int(

 (load_average - score_cfg['cpu-load-penalty-min']) /

 (

 score_cfg['cpu-load-penalty-max'] -

 score_cfg['cpu-load-penalty-min']

) *

 score_cfg['cpu-load-score-penalty']

)

 penalty = max(0, min(score_cfg['cpu-load-score-penalty'],

 penalty))

ovirt-ha-agent - migrate/restart

https://github.com/oVirt/ovirt-hosted-engine-ha/blob/master/ovirt_hosted_engine_ha/agent/states.py

If a different host has a score which is significatively best, the engine VM got shut down on the first host

and restarted on the second one (cold migration!)

 if (new_data.best_score_host and

 new_data.best_score_host["host-id"] != new_data.host_id and

 new_data.best_score_host["score"] >= self.score(logger) +

 self.MIGRATION_THRESHOLD_SCORE):

 logger.error("Host %s (id %d) score is significantly better"

 " than local score, shutting down VM on this host",

 new_data.best_score_host['hostname'],

 new_data.best_score_host["host-id"])

 return EngineStop(new_data)

Local maintenance triggers a live migration instead

ovirt-ha-agent

● Only live hosts are considered for startup/migration… (let’s see maintenance mode...)
● If a host hasn't updated its metadata in a short while, it is considered dead
● Startup algorithm is eager/optimistic: if two hosts have same score, both will try to start VM
● Sanlock (volume lease) will allow only one to succeed
● Race can also happen due to hosts not seeing metadata updates at the same time

Deployment

hosted-
engine-
setup

Engine

Configure, start

Setup host network (create management bridge)

Create SD

Create disks

Copy appliance disk over
Engine VM one

Start engine VM

Add host

ovirt-ha-
agent

Shutdown engine VM

Configure, start

Start engine VM

Vintage flow: <=4.1, deprecated in 4.2, removed in 4.3

oVirt engine is up and
running on its VM, first host
is there, engine VM and its
SD are not visible

Successfully terminated

VDSM

ovirt-ha-agent starts engine
VM from an initial conf file

engine VDSM

Query HA score and maintenance mode

Query running VMs and Storage domain statuses

Create SD

ovirt-ha-
agent

Vintage flow, part 2 - uncontrolled and up to the user

Create first data SD

User

Set the new SD as the
master SD

Autoimport engine SD

Autoimport engine VM

Generate OVF_STORE disks on the hosted-engine
SD with engine VM configuration

Only now the engine
VM and its SD are
visible in the engine

Only now ovirt-ha-agent is
ready to restart the engine
VM as configured by the
engine

The user can edit engine VM
configuration, an updated configuration will
be written by the engine in the
OVF_STORE volume via VDSM

Hosted-engine SD is not the
master storage domain!!!

Current ansible based flow (node - 0): goals

● Use standard engine flows, avoid re-implementing logic
● Replace complicated hosted engine import code in engine

● Keep all existing features
● Better input validation - get rid of execute, fail, retry cycle
● Phase out OTOPI in favour of Ansible
● Keep backward compatibility with our CLI and Cockpit flows

hosted-
engine-
setup

Engine on
bootstrap

VM

Engine from
the shared

storage
Configure, start

Configure a natted network

Start a local VM (over natted network)
from engine appliance disk

Add host

Add hosted-engine SD

ovirt-ha-
agent

Add disks

Current ansible based flow (node - 0)
libvirt VDSM

Configure, start

Create SD

Create disks

Add hosted-engine VM Update OVF_STORE disks
with engine VM definition

Shutdown bootstrap VM

Configure, start

Copy bootstrap engine vm disk
from local storage to the
shared storage

Start engine VM

Engine VM and its SD
are already visible in
the engine,
hosted-engine SD is
the master SDOvirt-ha-agent starts engine VM

from its definition as recorded in the
OVF_STORE by the engine

Everything is
correctly in
engine DB since
the beginning, no
autoimport!

Current ansible based flow (node - 0): benefits 1

● Reverse the vintage setup flow - start ovirt-engine first (instead of vdsm):
○ ovirt-engine already knows how to perform all the tasks we need, less bugs!
○ The bootstrap VM will use libvirt’s NATted network and local disk,

deployment is simpler on networking side
○ /etc/hosts is configured to resolve all the necessary names properly

● Only collect information needed for the bootstrap ovirt-engine to start:
1. Engine FQDN and credentials
2. The first host’s (self) hostname

Current ansible based flow (node - 0): benefits 2

● Only once we have a locally running engine:
1. Ask the user for storage connection data
2. Immediate validation possible through running ovirt-engine

All flows use the standard engine and vdsm logic!

● No SPM ID issues
● No vdsm issues with “undocumented” APIs
● All engine DB records reflect the latest and greatest storage features

All VM features match standard VMs (memory hotplug, migration profiles...)
No autoimport code, no value guessing - all defined using standard flows

Summary

Vintage (deprecated) flow
1. CLI and cockpit based
2. Fully custom setup (OTOPI)
3. Time to finish: ~30 min
4. No upfront storage validation
5. Custom code and flows
6. HE specific VM configuration

Node 0 flow
1. CLI and cockpit based
2. Setup based on Ansible*
3. Time to finish: ~30 min
4. Storage connection validated
5. Standard code and flows
6. Standard HE VM configuration

* OTOPI wrapper left for backwards
compatibility with answer files and so on

Cleanup

To cleanup a single HE host, from failed or successful deployments, the user can
run:

[root@c76he20190115h1 ~]# ovirt-hosted-engine-cleanup

 This will de-configure the host to run ovirt-hosted-engine-setup from
scratch.

Caution, this operation should be used with care.

Are you sure you want to proceed? [y/n]

It will not touch at all the shared storage, it’s up to the user to clean that if needed

How it looks like

Deploying from cockpit

On a clean host, the wizard in the
hosted-engine tab will let you choose
between Hosted-engine and
Hyperconverged setup

We have input a few values to
configure the engine VM; most
relevant:

● Engine VM FQDN
● Engine VM networking conf
● Engine VM root password
● MEM
● # of CPUs

If you choose to configure the
engine VM with DHCP, please
ensure to have a DHCP
reservation for the engine VM so
that its hostname resolves to the
address got from DHCP and
specify its mac address here

Otherwise static IP configuration

Please double check that the
address of first host we are going
to add to the engine is really as
you want

Admin password for oVirt engine

Configuration summary...

...if OK, press here to bootstrap
the initial local VM

The install steps will be tracked
here.
Any issue will be shown here as a
failed task

On successful executions, you will
reach this intermediate step.
Now we have a local VM with a
running oVirt engine and we are
going to use to configure your
system

Now you should create your first
storage domain.
The SD parameters will be
validated by the engine.
The setup process will loop here
until we get a valid storage
domain.

Configuration summary...

...if OK, press here:
● the SD will be created,
● A VM and all the HE disks will be created on

that SD
● The bootstrap local VM will be shutdown
● And its disk moved to the shared storage over

the disk of the target VM created by the engine
● And the engine VM will be restarted from the

shared storage
No more need to manually add another SD from
engine webadmin, no more need to wait for the
auto import process

Deployment progress here.
Any issue will be shown here as a
failed task

On successful executions, you will
reach this dialog and everything is
up and running.

On a deployed host, the HE tab will
show HE status

You will already have:
1 up datacenter
1 up host
1 up SD
1 up VM

Hosted Engine SD will be flagged
with a gold crown

The same for the engine VM and
for the host running it

Maintenance

Maintenance modes

● For HE we have 2 maintenance modes:
○ Global maintenance mode

■ It’s for the engine VM: the VM will be not migrated/restarted by HA agent
■ It applies to all the HE hosts at the same time (it’s a flag on the shared storage)
■ It can be set from CLI or from the engine

○ Local maintenance mode
■ It’s for host related activities
■ It applies to a single host
■ It’s locally saved on host FS (/var/lib/ovirt-hosted-engine-ha/ha.conf)
■ Setting host maintenance mode from the engine will also imply hosted-engine local

maintenance mode for the same host, the opposite is not true

Technical details and internals

Local configuration

fqdn=enginevm.localdomain
vm_disk_id=b3791e36-dfb0-4333-a666-cc7a73d61abe
vm_disk_vol_id=62501681-897d-46ab-8225-c54181022c2b
vmid=ed1535c9-903b-415c-bd2f-f3346ca4f256
storage=192.168.1.115:/storage/nfs/he1
nfs_version=v4
mnt_options=
conf=/var/run/ovirt-hosted-engine-ha/vm.conf
host_id=1
console=vnc
domainType=nfs
spUUID=00000000-0000-0000-0000-000000000000
sdUUID=503ba198-5375-40a5-837d-f349eb908398
connectionUUID=e29cf818-5ee5-46e1-85c1-8aeefa33e95d
ca_cert=/etc/pki/vdsm/libvirt-spice/ca-cert.pem
ca_subject="C=EN, L=Test, O=Test, CN=Test"
vdsm_use_ssl=true
gateway=192.168.1.1
bridge=ovirtmgmt
metadata_volume_UUID=0772f336-f9b9-40a2-b384-15d80ab6b071
metadata_image_UUID=2d9d2426-a051-45b5-a482-390def1b4d2f
lockspace_volume_UUID=49524530-8889-47a4-a1f4-8089c03252b1
lockspace_image_UUID=9da832b1-aeaf-43dd-a995-896fc3fa58e8
conf_volume_UUID=78638fb3-96ca-41ff-ab13-2864c92315fc
conf_image_UUID=8424c3c5-c0e7-4e40-92c2-f4661dffe965

The following are used only for iSCSI storage
iqn=
portal=
user=
password=
port=

/etc/ovirt-hosted-engine/hosted-engine.conf

It contains all the info needed to
connect and access the
hosted-engine storage domain
also if the engine is down

There is only one value that
changes between one HE host
and the next one: host_id
Mixing up host_id with different
hosts can cause huge
headaches!

On the shared storage

On the shared storage

● he_metadata
○ It’s a kind of whiteboard use by hosted-engine host to communicate.
○ Each host writes its metadata (status, local maintenance, score, update timestamp...) in its

specific sector (based on host_id, so it the got messed up...)
○ Each host can only write in its own sector but it will also read metadata from other hosts

● he_sanlock
○ Used with sanlock to protect engine VM disk and he_metadata global sector, based on host_id

● he_virtio_disk
○ It contains engine VM disk

● HostedEngineConfigurationImage
○ It contains a master copy of hosted-engine configuration used as a template adding a new HE

host from the engine
● OVF_STORE (two copies)

○ It contains VM definition (ovf+xml for libvirt of all the VMs on that SD)
○ Periodically (1h or on updates) rewritten by the engine

Temporary files

Editing the hosted engine VM is only possible via the manager UI\API
This file was generated at Sun Jan 20 01:37:27 2019

cpuType=Haswell-noTSX
emulatedMachine=pc-i440fx-rhel7.6.0
vmId=ed1535c9-903b-415c-bd2f-f3346ca4f256
smp=4
memSize=4096
maxVCpus=64
spiceSecureChannels=smain,sdisplay,sinputs,scursor,splayback,srecord,s
smartcard,susbredir
xmlBase64=PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4KPGRvbWFp
biB4bWxuczpvdmlydC10dW5lPSJodHRwOi8vb3ZpcnQub3JnL3ZtL3R1bmUvMS4wIiB4bW
xuczpvdmlydC12bT0iaHR0cDovL292aXJ0Lm9yZy92bS8xLjAiIHR5cGU9Imt2bSI+PG5h
bWU+SG9zdGVkRW5naW5lPC9uYW1lPjx1dWlkPmVkMTUzNWM5LTkwM2ItNDE1Yy1iZDJmLW
YzMzQ2Y2E0ZjI1NjwvdXVpZD48bWVtb3J5PjQxOTQzMDQ8L21lbW9yeT48Y3VycmVudE1l
bW9yeT40MTk0MzA0PC9jdXJyZW50TWVtb3J5Pjxpb3RocmVhZHM+MTwvaW90aHJlYWRzPj
xtYXhNZW1vcnkgc2xvdHM9IjE2Ij4xNjc3NzIxNjwvbWF4TWVtb3J5Pjx2Y3B1IGN1cnJl
bnQ9IjQiPjY0PC92Y3B1PjxzeXNpbmZvIHR5cGU9InNtYmlvcyI+PHN5c3RlbT48ZW50cn
kgbmFtZT0ibWFudWZhY3R1cmVyIj5vVmlydDwvZW50cnk+PGVudHJ5IG5hbWU9InByb2R1
Y3QiPk9TLU5BTUU6PC9lbnRyeT48ZW50cnkgbmFtZT0idmVyc2lvbiI+T1MtVkVSU0lPTj
o8L2VudHJ5PjxlbnRyeS
…

/var/run/ovirt-hosted-engine-ha/vm.conf

Periodically
regenerated
parsing
OVF_STORE disks

Used by ovirt-ha-agent to start
engine VM via vdsm

On tmpfs, not
persisted!

If the xml for libvirt is there (in
base64) - engine >= 4.2 - vdsm
will direct send that to libvirt
ignoring everything else

Inside engine’s DB
[root@hosted-engine-01 tmp]# sudo -u postgres scl enable rh-postgresql10 -- psql -d engine -c "select vds_name, vds_spm_id, ha_score,
ha_configured, ha_active, ha_global_maintenance, ha_local_maintenance from vds"
 vds_name | vds_spm_id | ha_score | ha_configured | ha_active | ha_global_maintenance | ha_local_maintenance |
is_hosted_engine_host
--------------+------------+----------+---------------+-----------+-----------------------+----------------------+--------------------

 host_mixed_1 | 1 | 3400 | t | t | f | f | f
 host_mixed_2 | 2 | 3400 | t | t | f | f | t
 host_mixed_3 | 3 | 3400 | t | t | f | f | f
(3 rows)

It should ALWAYS
match host_id used in
/etc/ovirt-hosted-engin
e/hosted-engine.conf
on each host!

ha_score as
reported by the host

If hosted-engine
is configured on
this specific host

If hosted-engine
is active on this
specific host

If this host reported to be
in HE global maintenance

vds is a view based on vds_static,
vds_dynamic and vds_statistics

All of them refers to the last time the engine successfully queries VDSM!
The engine has no direct access to hosted-engine metadata!!!
This info could be outdated!

Computed by the engine
according to VM info as
reported by hosts

Troubleshooting

Setup Logs

All the logs are available under /var/log/ovirt-hosted-engine-setup/ on the host:
 ovirt-hosted-engine-setup-ansible-get_network_interfaces-20183617355-er2ny7.log

 ovirt-hosted-engine-setup-ansible-initial_clean-2018361784-i75e3e.log

 ovirt-hosted-engine-setup-ansible-bootstrap_local_vm-20183617821-lhrq77.log

 ovirt-hosted-engine-setup-ansible-create_storage_domain-201836172019-wh5qok.log

 ovirt-hosted-engine-setup-ansible-create_target_vm-201836172117-o0rrxl.log

 ovirt-hosted-engine-setup-ansible-final_clean-201836173040-ugmzwx.log

We have at least 6 playbooks until the end so at least 6 log files (1 more for FC device discovery, 2 more for
iSCSI discovery and login)

The setup is also trying to extract engine logs from engine VM disks, not always possible

Other relevant logs on the host

Other relevant logs on the host are:

 /var/log/messages

 /var/log/vdsm/vdsm.log

 /var/log/vdsm/supervdsm.log

 /var/log/libvirt/qemu/HostedEngineLocal.log

 /var/log/libvirt/qemu/HostedEngine.log

Other relevant logs on the engine VM

Other relevant logs on the engine VM are:
/var/log/messages

/var/log/ovirt-engine/engine.log

/var/log/ovirt-engine/server.log

/var/log/ovirt-engine/host-deploy/ovirt-host-deploy-20180406171311-c74he20180302h1.localdomain-301aca6d.log

/var/log/ovirt-engine/host-deploy/ovirt-host-deploy-ansible-20180406171312-c74he20180302h1.localdomain-301aca6d.
log

The target VM started from the shared storage should be accessible on the FQDN you set from any host in
the network.
The bootstrap local VM runs over a natted network so it’s accessible only from the host where it’s running;
/etc/hosts should already contain a record for that pointing on the right address on the natted subnet.
If not accessible over the network other means to reach it are:
hosted-engine --console

remote-viewer vnc://<host_address>:5900 (hosted-engine --add-console-password to set a
temporary VNC password)

HA services logs

Relevant logs:
 /var/log/ovirt-hosted-engine-ha/agent.log

 /var/log/ovirt-hosted-engine-ha/broker.log

The logs are usually at INFO level, the logs can be set at debug level editing
/etc/ovirt-hosted-engine-ha/agent-log.conf and broker-log.conf

[loggers]
keys=root

[handlers]
keys=syslog,logfile

[formatters]
keys=long,sysform

[logger_root]
level=INFO
handlers=syslog,logfile
propagate=0

[handler_syslog]
level=ERROR
class=handlers.SysLogHandler
formatter=sysform
args=('/dev/log',
handlers.SysLogHandler.LOG_USER)

[handler_logfile]
class=logging.handlers.TimedRotatingFileHandler
args=('/var/log/ovirt-hosted-engine-ha/agent.lo
g', 'd', 1, 7)
level=DEBUG
formatter=long

[formatter_long]
format=%(threadName)s::%(levelname)s::%(asctime
)s::%(module)s::%(lineno)d::%(name)s::(%(funcNa
me)s) %(message)s

[formatter_sysform]
format=ovirt-ha-agent %(name)s %(levelname)s
%(message)s
datefmt=

Set DEBUG
here and restart
the service

Backup and restore

● Since hosted-engine relies on a volume lease (VM lease weren’t available in oVirt when we started
hosted-engine), we cannot rely on disk snapshots for the engine VM

● For the same reason we cannot live storage migrate the engine VM from its storage domain to a
different one

● The best approach to backup hosted-engine is periodically running engine-backup inside the VM
● With 4.2.7 we introduced the capability to restore a backup on the fly deploying

a new hosted-engine VM:
hosted-engine --deploy --restore-from-file=file

 Restore an engine backup file during the deployment

● The same tool could be used to migrate the engine VM from one storage domain to a new one or
from bare metal to hosted-engine via backup and restore

● CAREFULLY follow the documentation since ending with two active engine VM acting at the same
time over the same VMs could be really destructive

hosted-
engine-
setup

Engine on
bootstrap

VM

Engine from
the shared

storage
Configure, start

Configure a natted network

Start a local VM (over natted network)
from engine appliance disk

Add host

Add hosted-engine SD

ovirt-ha-
agent

Add disks

Restore: how it works
libvirt VDSM

Configure, start

Create SD

Create disks

Add hosted-engine VM Update OVF_STORE disks
with engine VM definition

Shutdown bootstrap VM

Configure, start

Copy bootstrap engine vm disk
from local storage to the
shared storage

Start engine VM

The provided backup file is injected here and
restored via ansible before starting the engine

TRICKY PART:
The backup we just restore on the engine contains
other hosts, other storage domains, other networks
and so on and maybe also with outdated info.
If, for instance, just one of the storage domain
recorded in the DB could not be connected the host
will be declared as non operational by the engine
and we cannot complete the deployment on a non
operational host.
In this case the best option is to temporary restore
on a new datacenter (the setup will create it on the
fly) to be sure that the deployment can successfully
complete. Once the restored engine is up and
running the user can connect to the engine and fix
what’s wrong and then repeat the procedure to add
back the host in the desired datacenter and cluster

Major issues: 1. spm host id mashup

host_id is locally stored on each host in /etc/ovirt-hosted-engine/hosted-engine.conf

It’s also stored for each host in the engine DB as vds_spm_id

If, due to human errors, reactivation of old decommissioned hosts, backup… two hosts tries to
use the same spm host id the stranger behaviour could be reported:

● Incongruent HA scores reported by the hosts
● Sanlock issues
● ...

SOLUTION: manually align all the host_id locally saved on host side to what’s recorded in the
engine DB (master copy!)

Major issues: 2. corrupted metadata volume

Due to storage issues or power outages and so on the metadata volume can be corrupted, if
so it can be cleaned running (just of one of hosted-engine hosts):

[root@c76he20190115h1 ~]# hosted-engine --clean-metadata --help

Usage: /sbin/hosted-engine --clean_metadata [--force-cleanup]
[--host-id=<id>]

 Remove host's metadata from the global status database.

 Available only in properly deployed cluster with properly stopped

 agent.

 --force-cleanup This option overrides the safety checks. Use at your
own

 risk DANGEROUS.

 --host-id=<id> Specify an explicit host id to clean

If specified, it will
clean only the sector
of a specific host

If specified, it will ignore any
safety check about other active
hosts

Major issues: 3. corrupted lockspace volume

Due to storage issues or power outages and so on the lockspace volume can be corrupted,
you can notice it from sanlock related errors in broker.log and sanlock.log. If so it can be
cleaned with

on each HE host

systemctl stop ovirt-ha-agent ovirt-ha-broker

sanlock client shutdown -f 1 # carefully, it could trigger the watchdog and reboot

on a single host

hosted-engine --reinitialize-lockspace

on each HE host

systemctl start ovirt-ha-agent ovirt-ha-broker

Major issues: 4. Engine-setup refuses to execute

● Engine-setup is going to shut down the engine VM for setup tasks while, if not in global maintenance
mode, ovirt-ha-agent is going to motor engine health and potentially restart the engine VM to gain a
working engine

● Shutting down the engine VM in the middle of a yum, engine or DB upgrade could lead to bad results
so engine-setup is trying to detect global maintenance status as recorded in the engine DB

● The point is that the DB could contain outdated info that the engine is not able to refresh for different
reasons and so we can have a false positive where engine-setup refuses to upgrade requiring global
maintenance mode while the env is already there

SOLUTION: if, and only if, the user is absolutely sure that the engine is really in global maintenance mode,
he can execute engine-setup with
--otopi-environment=OVESETUP_CONFIG/continueSetupOnHEVM=bool:True to completely
skip the check about global maintenance mode as recorded in the DB (potentially dangerous!)

● The user can edit the engine VM from the engine itself.
● The new configuration will be written in the OVF_STORE and consumed on the next run

(the OVF_STORE update will be sync, expect a few seconds delay to complete).
● The engine should validate the configuration preventing upfront major mistakes
● If for any reason the VM could not start with the new configuration the user can still:

copy /var/run/ovirt-hosted-engine-ha/vm.conf somewhere else

edit it as needed (rememend that the libvirt XML will win over anything else if

there, so fix it or remove it)

start the engine VM with customized configuration with:

hosted-engine --vm-start --vm-conf=/root/myvm.conf

fix what’s wrong from the engine, and try a new boot from the OVF_STORE definition

Major issues: 5. Engine VM refuses to start

Q&A ???

Q&A: questions from session 1

● Ansible deployment failed - where to look for errors?
/var/log/ovirt-hosted-engine-setup/ovirt-hosted-engine-setup-ansible*
It’s always in verbose mode

● Hosted Engine VM is unmanaged - how to recover?
It could happen in 4.1 if for any instance the autoimport code was failing. It couldn’t happen anymore by design with the new flow.

● HE VM is corrupted, what is the best way to recover?
The best way to recover is using the restore flow starting from the last backup. If no backup is available, try a fresh deployment
manually importing all the existing storage domains at the end and manually adding back all the hosts.

● How can we modify HE VM from vm.conf and persist it?
vm.conf is periodically regenerated starting from OVF_STORE content, if the engine is available the best option is to edit the VM
configuration from the engine. If the engine is not available, we can make a copy of vm.conf, fix what is needed and than try to start the
engine VM with a custom vm.conf with hosted-engine --vm-start --vm-conf=/root/myvm.conf
No change is going to be persisted and so the user has to manually fix the engine VM definition again from the engine one up and
running.

Q&A: questions from session 2

● Cannot add host to HE cluster (deploy as HE host)?
Check engine.log and host-deploy logs on the engine VM

● Host vm-status is different from the rest of the cluster?
Probably one of the host is failing to access the storage to write its score or read other ones from the metadata volume.
Please check update timestamps and broker.log for storage related errors.

● HE VM would not start - what to do?
Check agent.log, broker.log, libvirt and vdsm logs for errors. Fix as required (for instance regenerate lockspace or metadata volume or
provide a custom vm.conf).

● When recovering from backup - which appliance to take? For instance we are on 4.2 now, but original deployment was
on 4.1

Normally the best option is latest .z version of the same major used at backup time since engine-backup is not supposed to be an
upgrade tool.
For instance if the backup was took with 4.1 it will be safer to apply it on 4.1 based appliance.
On migrations it will be safer to upgrade before the migration if needed.

